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This paper explores a geometric approach to finding optimal routes for commercial

formation flight. A weighted extension of the classical Fermat point problem is used to

develop an analytic solution to finding optimal routes, thereby reducing the complexity of

the problem and enabling a quick evaluation. We then construct a method to decouple

origin and destination nodes creating a vertex from which the route projects, along with

loci of possible points of formation. This implementation enables us to take lists of routes

and e�ciently decompose them to find the optimal locations for flights to meet, fly in

formation and then break away and continue on their solo paths. We look at a case study

of creating formations from 210 transatlantic flights for a fleet size of up to 2, resulting

in overall global approximate total fuel savings of 8.6%. Furthermore we explore heuristic

methods to finding solutions when creating larger fleet size formations, indicating savings

surpassing 10%

I. Introduction

SESAR (the Single European Sky ATM Research) projections indicate that from 2005, with an estimated
increase in population and a growing reliance on high speed travel, the number of flights per day could double
by the year 2020.1 The implications of such a drastic rise are numerous; with a heavy dependence on fossil
fuels,2,3 increasing concerns for the environment4,5 and an infrastructure not yet capable of such a demand,6

alternatives to the way commercial flight operates today must be investigated. This paper explores one of
these alternatives: formation flight, in an attempt to optimize current routes to decrease overall fuel burn.

A variety of research has been undertaken in a number of di↵erent areas a↵ecting formation flight. The
study of animal behavior, such as geese flying in a ‘V’ formation,7,8 has always been of interest, while military
aircraft have long flown in formation for defensive and communicative purposes.9,10 However, more recent
work into the aerodynamic e↵ects of flying in close proximity11 coupled with real-time flight tests12,13 brings
substance to the idea that flying in formation can reduce fuel burn. The ability to save fuel on long-haul
flights, would not only save money, but could also increase performance factors such as range and speed.

One of the immediate benefits of flying in formation, over other proposed fuel saving methods,14–16 is
the relatively minimal change to the current infrastructure. The majority of today’s commercial airliners
can fundamentally observe a reduction in drag from formation flight.17 Although the possibility of designing
new planes in the future to take advantage of the aerodynamic benefits of this scenario would be a long term
goal, in the short term it would not be a necessity.

While studies show a positive trade o↵ between deviating routes in order to join formation and drag
reduction benefits,18–21 few have tackled the rather expansive problem of global routing for commercial
formation flight. The inherent complexity of analysing an increasing number of flights means that we need
to approach this in a clever way. Both a centralized and decentralized approach are explored in Ref. 22,
wherein the computational complexity restricts the analysis to the two-aircraft case. The incorporation
of ‘proposal marriage’ type algorithm explores the idea of joining formation in an ad-hoc fashion. Route
optimization studied in Ref. 17, along with a case study, shows significant cost saving percentages. By using a
more in depth optimizer, solutions obtained retain many of the restrictions imposed by todays infrastructure.

In order to evaluate completely a global optimum for formation flight within today’s flight structure,
hundreds of variables need to be considered. Moreover the increasing number of commercial flights and the
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overtly combinatorial nature of the problem makes this task heavily computational. This paper approaches
the problem in a simplified manner, in an attempt to gain insight into very large scale behavior without
being computationally prohibitive. One of our most important assumptions is the removal of the dependence
on time, gaining optimal solutions for flights when they are not required to take o↵ or land in a specific
time window. Although the impact of wind speed can have a large e↵ect on route planning this paper does
not try to address this but is rather left for future work. We also provide a cooperative solution, whereby
aircraft join formations for the overall benefit of the fleet, not personal gain. However, results containing
negative implications for certain aircraft can be easily removed. This essentially reduces the global problem
to a weighted shortest-path problem. The idea being, if we know the absolute optimal point for formations
to meet and break away, we can observe which variables would need adjusting to closely approximate this
solution and its underlying cost reductions.

The following sections outline both an analytic method for finding the optimal routes and the best way
to pair a list of them for a global optimum. A case study of 210 transatlantic routes and it’s results are
explored in section IV, which leads us to examine possible heuristic techniques for finding solutions for much
larger problems.

II. A geometric method for finding optimal join points for formation flight

Abstracting the problem of formation routing to a simpler geometric approach, for two arbitrary routes
wanting to join in formation, we can imagine three distinct airports as three distinct points on the plane,
two departure airports A and B, say, and then by assuming they are flying to a common destination airport
C, we reduce the problem to finding some point P (as in figure 1(a)) joining A, B and C together such that
the sum of the arc lengths are minimal (i.e. the cost per unit distance is minimised).

A. The Fermat point problem

1. A Non-weighted solution

We first assume an equal distance cost for travelling along each of these arcs by looking at the ‘Fermat point
problem’.23,24 This is a classical mathematical problem posed in the late 17th century, it states, given a
triangle, ABC, on the plane, find a point P such that the sum of the distances || ~AP ||, || ~BP || and || ~CP ||
is minimal. Over the years Mathematicians have posed numerous ways of finding this point P , including
derivative based methods, the use of mechanics and Fermat’s elegant geometric solution.

This paper explores an adaption of the original approach, first proposed via a series of letters between the
mathematicians Fermat and Torecelli,23,24 creating a solution based on the geometric dualities of triangles
and circles.

If we take a triangle ABC and construct outwardly three equilateral triangles along, and with side
lengths corresponding to, the arcs AB, BC and CA. Then the lines subtending the outer vertex of each
new triangle to its opposite vertex of the original intersect at a single point. This intersection is our
desired point P (su�ciencies ensuring certain types of solution are explored in Ref. 25) which minimises the
sum || ~AP || + || ~BP || + || ~CP ||. Similarly we can observe the same result by constructing the corresponding
circumscribed circles of each of these three new equilateral triangles, creating a concurrency at a point P

which is optimal.
One notable observation is the angle at which these arcs intersect.26 For a ‘weight-free’ solution the

angles of intersection 6
APB, 6

BPC and 6
CPA are all 120 �. This result holds true with many studies of

minimization observed in nature. For example the hexagonal structure of a honeycomb,27 minimal surfaces
in soap film experiments28,29 and even molecular arrangements30,31 all exhibit 120 � angles.

2. A weighted extension

In order for this geometric method to be practical for solving formation flight routing, we must first introduce
a notion of weighting to represent di↵ering cost per unit distance. Take three vertices A, B and C and their
join point P . We then introduce scalar weights wA, wB and wC corresponding to each of the arcs AP , BP

and CP respectively, reducing our problem to minimising

wA|| ~AP ||+ wB || ~BP ||+ wC || ~CP ||. (1)
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(a) Triangle ABC with possible join point P (b) Circumscribed circles and subtending lines
concurrent at an optimal point P

Figure 1. A Fermat-Torricelli geometric construction solution

If we imagine a table with three holes drilled representing the locations of the points A, B and C. Then
at each of the holes a massless, frictionless string is passed through and the corresponding weight is tied
to one end. We then tie the other ends of these three strings into a single knot. Letting this system settle
will result in a natural mechanical equilibrium. This analogy coupled with the minimal energy principle23

implies that the point the knot reaches on the table at mechanical equilibrium is identical to that which
minimises the equation (1).

Therefore we develop an adaption of the figure 1(b) for weighted arcs. Moreover for the triangle ABC

we seek a vectorial equilibrium about the point P so that,

wA

~

PA

|| ~PA||
+ wB

~

PB

|| ~PB||
+ wC

~

PC

|| ~PC||
= 0. (2)

By applying the law of cosines to the three vectors in (2), we obtain expressions ✓A, ✓B and ✓C for the
intercection angles 6

BPC, 6 APC and 6
APB respectively, based only on the input of the three scalar weight

values wA, wB and wC .23
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◆
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B. Application for formation flight

Incorporating a notion of weighted arcs permits us to more realistically assess the problem. We can see
from equation (3), that using three equal weights we obtain the reassuring angles of 120 �. In the case of
formation flight, however, these weights are not equal, in fact studies by Ref. 13 and Ref. 17 expect very
reasonable drag savings (and thus a relative reduction in fuel burn) for aircraft flying in the up-wash of other
formation members. For the purposes of this paper we have assumed average formation fuel burn figures in
table 1 (estimates from Ref. 18–21 for varying fleet sizes) as our weights, however, we could easily introduce
numerous other metrics in order to further assess the problem.

In terms of weighting this means that at the formation stage of the flight, on average, each fleet member
uses the proportion wf,n of fuel. As there are n members in the fleet, the total estimated fuel burn on the
formation arc is therefore n ⇥ wf,n. On the arc that corresponds to solo flight, each member experiences
their normal fuel burn so are weighted as 1. This unitary weighting can however be adjusted to take into
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Size of fleet (n) 1 2 3 4 5 6 7

Weight per fleet member (wf,n) 1 0.9 0.85 0.82 0.8 0.785 0.775

Table 1. Weight values to simulate proportional formation fuel distance for fleets of size n

account joining aircraft who do not burn fuel at the same rate. The three weights would need to be adjusted
to accommodate proportional di↵erences along both the solo paths and formation path.

For simplicity we use unitary weights for each flight now consider, for example, for two flights leaving
airports A and B and travelling to a common destination C, who want to join in formation via point P .
Here we have a fleet size of n = 2 and therefore the weights of the arcs AP and BP are 1 and for the
formation arc PC it is 2⇥wf,2 = 1.8. Using equation (3) we can then obtain the angles ✓A = ✓B = 154.15 �

and ✓C = 51.68 �, at which they must meet to minimise their cost. The three points, A, B and C, coupled
with the three angles, ✓A, ✓B and ✓C , define a single unique point that minimises the sum of the weighted
distances connecting them. This point is the desired point P where the two flights meet for minimal fuel
burn over their total journey.

1. Loci of possible formation join points

Knowing the three weights, and therefore the specific angles of interception ✓A, ✓B and what we will refer
to as the formation angle, ✓f , enable us to abstract further and eliminate the need for a fixed destination
vertex C. We have two fixed points A and B and an angle ✓f at which the trajectories meet. This knowledge
enables us to create loci of possible formation points. In turn we can construct two corresponding inscribed
circles with A and B on their perimeter. Each circle is comprised of two arcs, the first (the one we are
interested in) contains, on its boundary, all the points P such that 6

APB = ✓f , i.e. they meet at the angle
required by equation (3), the other, all the points that meet at 180� � ✓f as in figure 2(a).

(a) Inscribed loci of possible formation
points given ✓f

(b) Back vertices of optimal trajectory ensure all
three intercept angles are satisfied

Figure 2. Possible solution points given an angle of interception

Analogous to the method of outwardly constructing equilateral triangles of the weight free geometric
solution, we can outwardly construct two similar triangles ABX

1

and ABX

2

along the arc AB whose side
lengths are in the same proportions as the weights23 (i.e. the ratios wA : wB : wC and || ~

AXi|| : || ~

BXi|| : || ~AB||
are equivalent) generating two back vertices Xi (i 2 {1, 2}). Thus each of the inscribed circles is also a
circumscribed circle for one of the triangles ABXi (figure 2(b)). Therefore for any pair of nodes {A,B} with
three weights wA, wB and wf , we can construct two inscribed circles each containing a back vertex. We can
now reintroduce a destination node C and work out the optimal point to join formation. This is done simply
by working out which arc XiC crosses the boundary of its circle at the the required angle ✓f , this crossing
point is the desired P . What this means is that for any destination point C the optimal route {APC, BPC}
is such that XiPC is a straight line (i 2 {1, 2}). The back vertex is the point at which the route appears to
come and by projecting from this vertex we ensure not only that all three angles ✓A, ✓B and ✓f from (3) are
satisfied but also that this join is optimal.

4 of 17

American Institute of Aeronautics and Astronautics



2. Optimal join between loci

As we know the loci of possible join points a priori of a destination. We can now assess the more realistic
problem of having two routes with distinct departure and destination nodes. Then not only can we work
out where we should join for optimal formation flight, but also where a formation should break away.

For two solo routes AC and BD (figure 3(a)) we first work out the circles and back vertices for each pair
{A,B} and {C,D}. Then we find the arc joining a back vertex Xi of {A,B} to a back vertex Yj of {C,D}
(i, j 2 {1, 2}), such that it crosses both circles at the required formation angle wf , (figure 3(b)) resulting in
two crossing points P and Q which are the respective join and break points of the formation (figure 3(d)).
If no single arc exists that satisfies wf on both circles, then the optimal path is the shortest path between
either Xi and C or D, or Yi and A or B so that wf is satisfied only once.

3. Extension onto the sphere

We should note here that the original problem, and above described adaption, is inherently planar. As such
planar solutions for routing for formation flight will not necessarily be optimal on the globe. The properties
of a curved surface mean it is impossible to find a 2D earth projection system which is isometric32 (i.e.
preserves both angles and distances). We can however, take the earth to be spherical and translate our
method for use in spherical coordinates. We increase the dimension of each element of our method. Straight
lines become planes, intersecting the earth through its centre creating great circle paths. Our inscribed
circles become inscribed spheres, which (as we are only interested in its perimeter), intersect the globe along
a planar surface defined as a spherical cap (or small circle). This enables us to take latitudes and longitudes
of points and analogously solve our problem on the sphere.33,34

C. Verification

Figure 4 shows the di↵erence in total formation distance of our geometric solution against that of an exhaus-
tive search of 5000 random routes (evaluating possible join points at increments of 0.01 degrees of latitude
and longitude). Figure 4(a) shows the frequency of a di↵erence in solution. There are no instances of the
geometric method giving a worse result and it is clear that the geometric method accurately finds the optimal
point of formation, whilst taking a fraction of the time. Mathematical proofs for Fermat point problems
of this type (both planar and spherical) are fairly abundant: for a deeper understanding of these available
methods the author invites you to read Refs. 33–37.

III. An extension for larger fleet sizes

A. Decoupling the problem

The above is a quite powerful result because it enables us to easily decouple the problem, reducing pairs of
nodes to their back vertices and inscribed circles. This information is a priori of a destination, depending
only on the relative weights and a fixed pair of nodes. Using this fairly simple method of projecting from a
back vertex also means we can not only solve the 2 aircraft case, but theoretically the N aircraft case.

Take for example two routes RouteA and RouteB, by finding the back vertices XA, YB who’s arc crosses
at the required angles, we can create a ‘virtual route’ RouteAB, whose projected route is going from XA

to YB . A third route RouteC can then be added. This is done just as before, only we have to adjust the
arcs’ weighting to take into account the new size of the formation at each stage of the route. We then solve
the augmented problem where RouteAB and RouteC should join (PABC) and break away (QABC), with
weightings wRAB = 1.8, wRC = 1 and wRABC = wf,3 ⇥ 3 = 2.55. All that is left is to split RouteAB back
to two separate routes and update PAB and QAB based on their new destinations PABC and QABC .

Figures 5(a)-5(d) depict the case where we assume RouteA joins RouteB then RouteAB joins RouteC,
and breaks away in a similar way. However, realistically we want to find the order of joining that minimises
total fuel burn for all flights. Therefore the various combinations of the order of joining formation, including
scenarios whereby it might be optimal for only RouteA and RouteC to join, with a solo RouteB, must be
computed.
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(a) Solo routes

(b) Trajectory between back vertices crossing loci of possible optimal points

(c) Trajectory intercepet of loci

(d) Optimal route

Figure 3. Join and break points for two distinct routes
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Figure 4. Deviations in results between geometric solution and exhaustive search at 0.01 increments

(a) Solo routes RA, RB and RC

(b) Create projected ‘virtual-route’ RAB between back vertices XRAB and YRAB

(c) Join RAB with RC via new back vertices XRABC and YRABC

(d) Update RA and RB join points given the future join

Figure 5. Join and break points for three distinct routes

B. Method for creating fleets of size 2 and 3

For any 3 distinct routes, for formations of size 2 there are four combinations. When trying to find fleets of
up to 3 there is an additional nine combinations, which consist of 2 choices from 3 forms, one for the join
up and one for the break away. If for example we take the two routes

RouteA = {Atlanta, Barcelona}, RouteB = {Cincinnati,Frankfurt}, (4)

and by using the above methodology with weight values from table 1 we can obtain the desired points for
formation flight. Figure 6(a) shows the formation of RouteA and RouteB. The total great circle distance, and
therefore fuel burn distance, for RouteA and RouteB as solo routes is 14359 km, when flown in formation
the fuel burn distance reduces by 737 km to 13622 km. This equates to a rather significant saving of about
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5.12%. By then adding a third route

RouteC = {Miami, Zurich}, (5)

we can run a similar implementation to find the optimal ordering of join and break points and their respective
locations (as shown in figure 6(b)). The order of joining formation is RouteA joins RouteC, then RouteAC

joins RouteB, followed by RouteA breaking away from RouteBC, then RouteB breaking from RouteC. The
resulting saving is about 8.37%.

Cincinatti

Atlanta 

Frankfurt

Barcelona 

Break Point

Form Point 

(a) Optimal formation route for the two routes RouteA and RouteB

(b) Optimal formation route for the three routes RouteA, RouteB and RouteC

Figure 6. Optimal Join and Break points for fleet size 2 and 3

This outlines a simplistic framework for deciding the locations where fleets of size 2 and 3 should join up
and break away in order to minimise total fuel burn. By decomposing larger lists of routes into combinations
of subproblems of size 2 or 3 we can, in principle, solve for N routes.

C. Incorporating a minimum distance to climb

Some of our early results indicated that the best savings to be had where when flights had a common
departure or destination airport. Others tended to be between airports of close proximity. This meant
that many join points were in fact at the airports themselves. Although this seems like a reasonable result,
practicality issues could likely prohibit such a route. In this scenario flights would need to take o↵ in
formation (possibly on a parallel runway which would rule out many airports) and then engage in a series
of step climbs in formation until they reached a cruising altitude. The implications of this along with the
di�culty of achieving formation drag savings along the way directed us to look at only joining formations
once they are at a cruising altitude.

Implementing this into our current framework is fairly straightforward. First assume there is a circular
region of a predefined radial distance (a horizontal change in distance between take o↵ and an altitude at
which formations can be joined) around each airport. If the optimal formation point lies within any of those
regions then it cannot be used, however it can be moved onto its perimeter. To find the best point on this
perimeter we project from a new point (simulating the equilibrium of a moment about an arm centred at the
point A or B.) as shown in figure (7(b)), determined by intersections of the lines between the back vertices
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and the points where the perimeter intersects our arcs of optimality. Where this new projection intercepts
the perimeter of the restricted region is our new desired meeting point (figure (7(c))).

(a) Initial attempt too close to airport A (b) Work out new projection point and new in-
tercept

(c) Formation meets at new intercept point (d) Formation meets at required distance away

Figure 7. New join point required to be at least a certain distance from each airport

This allows us to prescribe distances which the flights must be away from the airports before they can
join a formation. Not only does this introduce a further aspect of realism, but could also be used to avoid
joining formation around a busy airspace.

IV. Transatlantic flight case study for pairs

Using the methodology of the previous sections, we examine a list of 210 real transatlantic flights departing
from 26 US airports and flying to 42 European airports. We analyse the potential savings of formation fleets
of size 2. This study assumes that each plane is identical, that is, the reduction in drag and the relative fuel
burn of each aircraft is assumed to be consistent; with formation weightings based on table 1 (Our simplistic
weighting strategy can, however, be adjusted to incorporate any proportional di↵erences). Furthermore we
do not deal with the issue of cooperative fuel saving distribution between specific airlines, we treat the list
as a single company. In keeping with our assumptions the results of table 2 are also time-free, based on the
optimal positions for joining a fleet and breaking away. Lastly as discussed in section III(C) we include a
minimum horizontal distance of 320km that the join points must lie away from each airport in order to allow
each plane to reach a cruising altitude.

We firstly Computed the best formation route for all 22791 possible pairs of flights, taking a total of just
2.47 seconds on a 3Ghz desktop PC. Then using AMPL (A Mathematical Programming Language) we ran a
MILP (Mixed Integer Linear Program) to select optimal combinations of formations, which solved in about
10 seconds, and resulted in all 210 routes being paired into 105 formations of size 2 (as in Figure 8)† .

Table 2 shows for the two-aircraft case the overall average deviation in distance is about 10km, which
at Mach 0.84 is a di↵erence of less than a minute. Therefore time implications from the non-direct routes
are, on average, not too substantial. More significantly, the results suggest, on average, a significant saving
of 8.643%. Crude cost estimates suggest a monetary saving of around $1066.9 per aircraft (Based on a cost
per gallon of fuel or $3 at 1.65km per gallon38).

For the globally optimal combination, the majority of formations were made between routes which re-

†More maps available at http://arthurrichards.blogspot.co.uk/2012/07/optimal-transatlantic-routes-for.html
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Figure 8. Transatlantic formation routes

Average per aircraft

Solo distance (km) 6711.5

Formation distance (km) 6721.2

Deviation in route distance (km) 9.75

E↵ective fuel distance (km) 6124.7

E↵ective fuel distance saved (km) 586.8

Percentage saved (%) 8.643

Table 2. Per flight averaged results for joining transatlantic routes of fleet size 2
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quired little deviation from their original path. That is, between routes whose departure airport, destination
airport or flight path were in close proximity to each other. Even though distance to climb restrictions were
implemented, many pairings found the best gain to be between other flights that shared either their depar-
ture or destination airport. If for example we look at Atlanta Hartsfield-Jackson (ATL) airport, then 18 of
their flights make up 9 of the pairs. Even though they do not start to benefit from formation fuel savings
until they are 320km away it is clear that they do not deviate greatly from their original paths. Although
this paper does not attempt to asses how to schedule such flights, it is interesting to note that ATL airport
has 5 parallel runways, which could be a viable option for such a scenario.

V. Methods for scaling up to larger formations

The methodology outlined in the previous sections enable us to rapidly enumerate potential formations
between routes. We can therefore take a list of solo routes, and return a list of favourable formation routes
(routes that benefit from joining in formation) in a relatively short amount of time. The combinatorial
nature, however, of enumerating all possibilities means that as we increase the size of the route list the
number of favourable combinations also increases. In fact the number of possible combinations of choosing
k (our fleet size) from a set n (our route list size) is governed by binomial coe�cients nCk = n!

k!(n�k)!

This implies that, although the problem is relatively scalable, there are computational restrictions on
what size of problem is feasible. Table 3 outlines the computational times of 6 di↵erent scenarios based on
the number of possible combinations to be evaluated. It is therefore clear that for increasingly large lists
of solo routes total computation time dramatically increases and this combined with increasing the fleet
size can make it impractical to enumerate in a reasonable time. The increase in computation time for a
single combination is reflected in the complexity of a particular join. For example for two solo routes joining
together there is only one way for them to join and one way for them to break way. For three routes there 13,
firstly 3 for them to join, with each of those having 3 di↵erent ways to break away, then there are further 3
possibilities where only two join and one flies solo, then lastly all three fly solo, totalling 13. If we consider a
fleet size of 4 there are 1816 di↵erent possible formation topologies. In this scenario not only are we looking
at more combinations, but each of those possibilities we need to evaluate dramatically more topologies.
Enumerating combinations, however, is a highly parallelisable task, and so larger lists could easily be run on
a computer-cluster and therefore mitigating much of the time dependance on the enumeration stage.

This realisation tells us that in order to examine a growing fleet size and a growing route list in a reasonable
time we will need to consider possible heuristic methods to reduce the need to evaluate all combinations.
Moreover, introducing further aspects of realism in to the problem such as time, will in fact benefit us
computationally. The issue we must therefore next address is the impact the size of a problem has on the
optimization.

Fleet size 2 Fleet size 3

Size of Route list Combinations Wall time Combinations Wall time

75 2,775 0.31s 67,525 6m 54s

210 21,945 2.47s 1,521,520 2h 35m 42s

3279 5,374,281 10m 7s 5,870,506,279 1y 51d 22h 28m*

Table 3. Possible combinations needing to be evaluated for varying sizes of route list and fleet (Times are
based on a dual-core 3 GHz desktop with 2GB of RAM) (*) estimated

A. Optimisation techniques for finding a solution

Once a list of all favourable formations has been enumerated, we need to take that data and find the
optimal choices to create our final solution. In the case study of section IV we used a generic MILP (Mixed
Integer Linear Program), implemented in AMPL with CPLEX. The MILP solver within CPLEX calls upon
a number of di↵erent algorithms (mainly branch and bound and cutting plane) and is arguably one of the
best commercial solvers available for this.39 Solving in such a way is highly e↵ective for smaller problems.
However, a MILP is NP-hard under certain conditions, such as number of variables, number of constraints
and the convexity of the problem.40 The non-convex nature of our problem, i.e. there are many possible
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local minimum, means that finding a global minimum is already a di�cult task. Therefore as we increase
the size of the problem (the number of variables) we also increase the resources needed to solve it. Due
to this we could not solve e↵ectively using a MILP for problems consisting of more than around 500,000
favourable combinations. If we took an example list of 3279 routes going between major cities worldwide, we
can enumerate the 5 million possible pairings in around 10 minutes. The resulting favourable formations for
this particular set of routes is around 70%, or some 3.5 million possibilities. Therefore the problem which
we need our MILP to solve has 3.5 million variables and is infeasible.

There are a numerous ways to go forward with such a combinatorial problem. The two main directions
are to either reduce the number of favourable combinations in order to reduce the number of variables in our
problem or to find an approximate global solution. The first approach would involve introducing heuristics in
an attempt to eliminate a large proportion of our variables so as to then find a globally optimal solution using
a MILP. These may include minimal saving constraints, such that combinations with small overall savings
would not be considered as impacts from time or weather could easily mitigate such savings, or maximum
deviation constraints, so a flight’s total distance does not impact too drastically on the duration of a flight.
Although as explored later in this section we can take an already solved smaller sub-problem and build upon.
The second approach would to use heuristic algorithms to find a ‘good’ solution in a feasible amount of time.
We consider one such an approach in the following section by implementing a Simulated Annealing algorithm
to find solutions to the problem of picking the best combinations from a list of favourable possibilities.

Ideally we would use a mixture of both approaches to find a reasonable solution. It would also be helpful
to implement heuristic constraints in such a way as to increase the realism of the model rather than a simple
pruning of viable solutions which match a criterion.

B. Simulated Annealing

The simulated annealing algorithm is a probabilistic metaheuristic for finding solutions which are ‘accept-
able’ rather than necessarily globally optimum.41–44 It is based on a controlled cooling technique used in
metallurgy. At each step we consider a perturbed neighbouring state and probabilistically decide wether to
move to this new state or stay with the previous one. The notion of a temperature means that while at
higher temperatures we are more likely to accept a new state that is worse in the hope to increase the search
space and to eventually result in a better solution. Then as the temperature lowers we converge towards the
best local solution.

The algorithm, as described in Ref. 45, is a basic framework, which we will adapt to suit our particular
problem. We firstly use an upper-triangular matrix of costs for each possible favourable combination, where
a row i and column j (for i  j) correspond to the precalculated cost of flight i joining flight j (a solo flight
is along the diagonal where i = j). We also use a symmetric state matrix s consisting of binary values.
If the current state has flight i pairing with flight j in it then s(i, j) = s(j, i) = 1 otherwise it is zero.
Setting it up in this way allows us to do two things. Firstly we can easily calculate the cost of a given state
by element-wise matrix multiplication, as the cost Matrix is upper-triangular this means that even though
there are two binary values in s for a distinct pair {i, j}, their cost is only added once. Secondly having a
symmetric state matrix gives us an easy parity check, by summing along the rows or columns of s, we can
see if any flights are not allocated either a formation or solo route.

The method used to decide on a neighbouring state is itself a random process upon the current one
(outlined in algorithm 1). Firstly we produce a random number between 1 and the number of favourable
formations. That number then represents either one of the formations or one of the solo routes. If the pairing
is part of the current state, take it out, and if it is not, put it in (making sure any overlapping pairs are
changed to solo flights).

1. Simulated Annealing Results

The Simulated Annealing algorithm is an e↵ective way of finding ‘good’ solutions in a fixed amount of time.
The time of each iteration is dependent on the size of the problem, however, once this is known we can set
specific walltimes for the algorithm to run in order to find a solution. It is worthwhile to note here that
some parameters of the basic algorithm should be adjusted on a problem to problem basis. Moreover the
annealing schedule is very important, as it dictates how long we are able to try out worse solutions and in
doing so we can attempt to mitigate some of the impact of non-convexity of the problem and avoid many of
the local optimums. Preliminary tests carried out indicated that the best annealing schedule for our scenario
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Algorithm 1 Neighbouring state algorithm

1: procedure Neighbour(s, costMatrix) . A perturbation about the state s
2: FF  list of indices of favourable formations . Each corresponds to a binary value in s and a cost

value in costMatrix
3: NF  length(FF) . Including solo routes
4: R rand(1, NF ) . Pick a random formation
5: index FF (R) . Get the location of this random formation
6: if s(index) = 1 then . Already in state
7: s(index) 0 . Remove it
8: else
9: s(index) 1 . Add it

10: end if
11: for i = 1..length(s) do
12: if sum(s(i, :)) = 0 then . Aircraft not allocated to a formation or solo flight
13: s(i, i) 1 . Put it in solo flight
14: end if
15: end for
16: end procedure

was the one relating to the Boltzmann distribution T = T0
log k . This schedule spends significantly longer at

‘higher’ temperatures allowing us to more thoroughly explore our search space. However it may still be the
case that as we come close to the specified iteration limit, the temperature is still high (i.e. more that 0.01),
in such a case we can easily switch to a faster annealing schedule to rapidly descend to our final solution.

In order to benchmark the quality of the algorithm, we must return to our transatlantic case study from
section IV and assess the di↵erence in solutions between using a MILP (which gives us the global optimum
for pairs) and the SA (Simulated Annealing) algorithm. We can see from table 4 and figure 9 that by using
an SA for pairs of transatlantic flights we can obtain solutions with a cost decrease of around 7.6%, getting
very close to the optimal solution of 8.6% after a 100,000 or so iterations. The SA for finding pairs runs at
about 200,000 iterations a minute which allows us to easily reach a reasonable solution in a small amount
of time. If we ran it for a much larger number of iterations we could expect reduce the gap between the
global optimum but with a likely diminishing rate of return. It is also important to note here that, as it is
a stochastic process, we cannot guarantee a specific result as every run of the algorithm runs on a di↵erent
set of random numbers. We can however include a very large iteration count and an acceptability factor so
that the algorithm ends only after it has achieved a certain cost decrease.

Iterations Walltime Minimum (%) Average (%) Maximum (%)

25,000 08s 7.278 7.371 7.459

50,000 16s 7.320 7.518 7.698

100,000 29s 7.537 7.639 7.818

200,000 01m 02s 7.616 7.728 7.819

5,000,000 23m 31s 7.935 8.037 8.162

MILP optimal pairings 10s - 8.643 -

Table 4. Cost percentage saving using Simulated Annealing against a MILP

2. Simulated Annealing for formation fleet sizes up to 3

The SA algorithm for fleet sizes up to 3 is adapted from the methodology above by using 3-Dimensional
matrices for both the state and costs. We also use an initial state corresponding to (an already found) ‘good’
solution for pairs. Again as we are dealing with a much larger problem the computation times are e↵ected,
but unlike the MILP we can easily predefine a duration or iteration count. The algorithm currently runs at
about 200 iterations a minute, however, there is plenty of room to improve its e�ciency. The SA for fleet
sizes up to 3 does however show some promising results. We can see from table 5 and figure 10 that it is
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Figure 9. Simulated Annealing against a MILP for fleet size 2

possible to increase the total cost saving from 8.6% (from the MILP for pairs) to around 9.7% by letting
fleet sizes be up to 3 bringing the overall average saving to almost 10%. This furthers the indication that it
is worthwhile exploring larger fleet sizes.

iterations Walltime Minimum (%) Average (%) Maximum (%)

5,000 16m 21s 8.758 8.957 9.179

25,000 1h 21m 18s 9.050 9.340 9.563

50,000 2h 57m 58s 9.296 9.429 9.702

100,000 6h 01m 45s 9.403 9.556 9.803

200,000 10h 48m 46s 9.541 9.675 9.826

MILP optimal pairings 10s - 8.643 -

Table 5. E↵ect of iteration count on percentage cost increase using Simulated Annealing against a MILP

Figure 10. Percentage cost saving using formations of size three against solo flight
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One of the requirements to using a SA algorithm is the having to define an initial state. This means
however, that we can reuse previous results as initial states in a hope to better the result. A variety of
research46–49 has explored ways of using this to improve the quality of the solution. We could for example
execute many parallel runs of the same algorithm systematically updating each one with the overall best
solution found at given time intervals. These sorts of adaptions allow some scope for tailoring the algorithm
to a specific problem in a hope to improve e�ciency and results.

Figure 11. Comparison of savings in cost for di↵erent methods

C. Pairs of pairs

Finally we look at a heuristic way of building upon the optimal solution for pairs to create larger fleet
sizes without the need to evaluate all combinations. We take the globally optimal set of 105 pairs for the
transatlantic case study and try to pair each of those with another to make fleet sizes of 4. This is done much
like before where we evaluate each combination trying to find the favourable ones. We use the approach
outlined in section III of creating ‘virtual’ routes and then try to find the optimal points for these two virtual
routes of size 2 to meet and break away (using updated path weightings based on table 1). We therefore
only need to evaluate the ways of pairing 105 routes; some 5460 combinations rather than joining 210 routes
into fleet sizes of up to 4 which results in close to 79 million combinations.

From the 5460 possible combinations evaluated (in less than a second) 1246 were favourable (around
20%). These were then optimised using a MILP in AMPL (as in section IV to find the optimal combination
of fleets of size 4 or 2. The resulting solution consisted of 37 fleets of size 4 and 31 of size 2, equating to
a total average saving against flying solo of 10.39%. This outlines a very simple method for creating larger
fleet sizes using very little computational time but yielding an additional 1.75% above the optimal result for
pairs (Figure 11) giving us a quick upper bound on future solutions.

VI. Conclusion

In this paper we have explored a geometric method for optimal routing for formation flight. An adaption
of some basic geometric properties observed by Fermat have enabled us to decouple a complex problem,
creating a possible method to find a global optimum for a list of N routes. The ability to create possible
solution loci a priori of a destination reduces the degrees of freedom of the solution. The simplistic nature
of the model enables us to find possible solutions to the routing problem very quickly. The method has
been developed as such, in a hope to observe some of the principal factors a↵ecting the locations of optimal
formations. By running simulations for large lists of transatlantic flights it may be possible to gain insight
into regions where formation flight is more beneficial.
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One of the major assumptions of this model is that on the relaxation of a time dependency of flights.
This may not be entirely realistic in the current airline infrastructure, however it can be used to gain an
insight into what times di↵erent members of a fleet should leave in order to fly the optimal path. Moreover,
results from section IV show that the average distance deviations, result in only a small increase to total
flight time, while estimates show significant percentage savings. The impact of moving to a more dynamic
problem as well as assessing uncertainty issues arising from factors such as weather are left for future work.

The combinatorial nature, and implied computational complexity, of the problem limits its potential
for a global optimum for larger problems at this stage. We have however explored heuristic methods for
finding ‘good’ solutions within reasonable time frames. Furthermore it is possible to incorporate a number
of di↵erent constraints in an attempt to radically reduce the number of computations. For example we
could reintroduce arrival and departure time dependence and only join routes which could do so in their
required time frame. Our scalar method of arc-weighting could, in future, be adapted to introduce more of
the decision variables which a↵ect formation locations along with increasing the realism of our model. It
would also be beneficial to incorporate a systematic method of building up to a global solution. By storing
relevant information for each possible combination of routes in a fleet of size n = 2 or 3, we could increase
n without having to recompute smaller fleets. Moreover, creating structured data for all fleet sizes allow us
to easily extend formation sizes in a heuristic way in an attempt to reduce costs further.
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