
Decentralised Multi-Demic Evolutionary Approach to the
Dynamic Multi-Agent Travelling Salesman Problem

Thomas Kent
University of Bristol
United Kingdom

thomas.kent@bristol.ac.uk

Arthur Richards
University of Bristol
United Kingdom

arthur.richards@bristol.ac.uk

ABSTRACT
This paper looks to use both centralised and decentralised imple-
mentations of Evolutionary Algorithms to solve a dynamic variant
of the Multi-Agent Travelling Salesman Problem. The problem is
allocating an active set of tasks to a set of agents whilst simultane-
ously planning the route for each agent. The allocation and routing
are closely coupled parts of the same problem, this paper attempts
to align the real world implementation demands of a decentralised
solution by using multiple populations with well defined interac-
tions to exploit the problem structure.

KEYWORDS
Multi Agent Travelling Salesman; Evolutionary Algorithms; Allo-
cation and Routing; Distributed problem solving; Decision Making

ACM Reference Format:
Thomas Kent and Arthur Richards. 2019. Decentralised Multi-Demic Evolu-
tionary Approach to the DynamicMulti-Agent Travelling Salesman Problem.
In Genetic and Evolutionary Computation Conference Companion (GECCO
’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3319619.3321993

1 INTRODUCTION AND BACKGROUND
Reconnaissance and surveillance, search and rescue and package
delivery are real-world problems relying on decision making and
coordination of multiple agents [1]. Many can be modelled as being
given a number of tasks to be completed and a number of agents
to complete them, what is the best way to allocate tasks to agents
and subsequently navigate between those tasks. The optimisation
problem can be defined as a slight variation on the Multi-Agent
Travelling Salesman Problem (MATSP), in both allocating a set
of tasks to a number of agents and simultaneously planning the
route for each agent [2] in order to minimise some given cost
function. The driving question of this work is: can the real-world
constraints of the problem, such as limitations to communication,
need for robustness and spatial separation of agents, inform the
structuring of the optimisation technique in such a way that is
mutually beneficial to both the solver and execution?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321993

Figure 1: Population structures and flow

This work uses the flow-based formulation [2] of theMulti-Agent
Travelling Salesman Problem. Let i and j denote a task from the set
T = {1, ...,N } of tasks, the set A = {1, ...,M} of agents and the ma-
trix ci ja to denote the cost of agent a travelling from task i to j . Ad-
ditionally define the binary decision variable xi ja which equals 1 if
agenta visits task j immediately after task i , and zero otherwise. The
objective is to minimize the total cost of all the agents travelling be-
tween the assigned tasks that is:minxi ja

∑
i ∈T

∑
j ∈T

∑
a∈A ci jaxi ja .

This is subject to a number of standard constraints ensuring agents
are used only once and tasks are all visited exactly once. Addition-
ally subtour elimination constraints from Bektas [2]. This paper
relaxes the need for agents to start or finish at a depot by represent-
ing the agents’ current locations as dummy tasks with zero return
cost, acting as their own personal depot.

2 EVOLUTIONARY ALGORITHM FOR MATSP
A MATSP-suitable chromosome representation is implemented
based on Tan et. al [6]. Explicitly, define T to be the set of all N
tasks ti for i ∈ {1..N } andA to be the set of all agents a ∈ {1, ..,M}.
Then let τk ⊆ T be an ordered subset, for each agent k ∈ A, a
chromosome X , and solution to the MATSP is defined as X :=
{τ1, ..., τA} such thatτa∩τb = ∅,∀a , b ∈ A. A population, P , is then
a set of current chromosomes, Xl , defined as P := {Xl }, for all l ∈
{1, ..., µ}, where µ denotes population size. The fitness quality of
each chromosome then corresponds to the MATSP objective, thus
we seek the individual that minimises this.

The EA follows the standard three stage approach of initialisation,
reproduction, selection. Three MATSP specific reproduction opera-
tors are implemented forMutation, Crossover and Improvement. Two
Mutation operators, from Qi et al. [5], swap-mutation and move-
mutation, two crossover operators, Sequence-Based Crossover and
Route-Based Crossover based on Potvin and Bengio [4]. In addition,
an improvement heuristic operator based on the 2-opt method [3]
is implemented. Finally, the selection operators, random selection

147

https://doi.org/10.1145/3319619.3321993
https://doi.org/10.1145/3319619.3321993

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Thomas Kent & Arthur Richards

for reproduction and tournament selection for determining the next
generation are used.

During simulation the state of the world changes and the MATSP
problem is updated. This is captured via an update stage to move
the simulation forward by a time-step dt . It performs the following:
1) Move the Agents towards the next task in their current route;
2) Check if tasks are complete; 3) Add new tasks to the simulation
(added to the end of the route of the closest agent); 4) Update the
distance matrix ci ja . Thus the simulation begins with initialisation,
then for every time-step the reproduction, selection, then update
stages are run, with these repeating until all tasks are completed.

3 MULTI-DEMIC EA FOR MATSP
This paper looks to use the population-distribution island-model
[6], where the global population is divided into a number of demes
(distinct populations) and referred to as the Multi-Demic Evolu-
tionary Algorithm (MDEA). Communications between these demes
allow for individuals to migrate between them at pre-defined inter-
vals. These demes are structured to align with real world execution
of a MATSP where tasks are distributed amongst multiple agents
and are completed independently.

Each agent, k ∈ {1, ..,A}, holds a set of demes, Pk := {Pkl }, for
all l ∈ {1, ..,A}, one deme for each other agent l as depicted in
Figure 1. For each of these demes the EA is restricted to alter only
parts of the solution which affect the allocation and route of agent
k or agent l (the deme’s agent pair). Importantly each agent has a
pairwise way of ‘reasoning’ about potential interactions with the
other agent, with tasks being exchanged only between agents who
own them and/or agree to exchange, but can also use its ‘personal’
deme Pkk to improve its own route in isolation.

The MDEA uses the initialisation, reproduction, selection and
update, but applied independently to each deme. After a number of
generations the exchange stage synchronously migrates individuals
between demes and generates the best current route. For all feasible
exchanges between agents capable of communicating this stage
carries out the following: 1) 1st knowledge update to propagate
each agent’s current allocation and fix/prune invalid individuals; 2)
Migrate individuals whose allocation is valid for that deme’s agent
pair between corresponding demes of the other agents i.e Pkl ↔
Plk ; 3) Exchange allocations, randomly from all feasible exchanges;
4) Update each agent k’s current best routes from the best individual
from its personal deme Pkk ; 5) 2nd knowledge update to propagate
each agent’s current allocation and fix/prune invalid individuals;

For the Centralised MDEA (cMDEA) the best solution is the best
individual from all demes. In the Decentralised MDEA (dMDEA),
restrictions on communications are implemented, meaning that
agents are only able to exchange when they are within a certain
proximity, r , of one another. Structuring the demes and exchanges
in such a way allows exchange in a pairwise manner and in turn
allows each agent to always be sure that their allocation and route
does not conflict with any one else’s, they are free to evolve their
demes and ‘reason’ about potential exchanges with other agents.

4 RESULTS AND DISCUSSION
We apply the single-population EA, cMDEA and the dMDEA to
solve a set of 50 sample problems, taking place in a 200 by 200 metre
area with agents’ initial locations and all tasks being randomly

Figure 2: Communication distances: 5 Agents 35 Tasks

placed. The methods have been implemented in Python 3.5 and
run on laptop with a 2.7Ghz core i7 CPU and 16GB of RAM. For
the EA a single population of µ = 50 was used producing λ = 25
offspring per generation and for the multi-demic cases each deme
had a population µ = 20, each producing λ = 10 offspring with 5
generations produced per time-step. The trials have been run for
5 agents with 35 initial tasks, with a further 18 added periodically
(once per 5 time steps). For the dMDEA we look at a range of
communication radii, r from 25 to 200, where importantly the agents
only evolve demes corresponding to agents within r + 10 metres.

The objective function, total distance travelled, shown in Figure 2
clearly shows that as the communications restriction is gradually
lifted the total distances of the dMDEA results tends to the cMDEA,
notably, any communication radius of 125 or greater either matches
or outperforms the EA. In addition, as communication range is
increased the agents spend more time evolving the demes corre-
sponding to nearby agents and thus the linear runtime increases.
Clearly Figure 2 shows the relationship between the communica-
tion radius and thus the number of other agents to consider and the
resulting run-time. Therefore there is a clear trade-off decision be-
tween ability to communicate, and thus agents you should consider,
and run-time. However, as the calculations could potentially be
done on board each agent and thus be done in parallel, this would
result in wall-time scaling with problem size significantly closer to
O(A) than the O(A2) of the cMDEA.

ACKNOWLEDGMENTS
This work was funded and delivered in partnership between the
Thales Group and the University of Bristol, and with the support
of the UK EPSRC Grant Award EP/R004757/1 (T-B PHASE).

REFERENCES
[1] Mehdi Alighanbari. 2004. Task assignment algorithms for teams of UAVs in dynamic

environments. Ph.D. Dissertation. Massachusetts Instittue of Technology.
[2] Tolga Bektas. 2006. The multiple traveling salesman problem: An overview of

formulations and solution procedures. Omega 34, 3 (2006), 209–219. https:
//doi.org/10.1016/j.omega.2004.10.004

[3] G. A. Croes. 1958. A Method for Solving Traveling-Salesman Problems. Operations
Research 6, 6 (1958), 791–812. https://doi.org/10.1287/opre.6.6.791

[4] J. Potvin and S. Bengio. 1996. The Vehicle Routing Problem with Time Windows-
Part II: Genetic Search. INFORMS journal on Computing 8, 2 (1996), 1–21.

[5] Y. Qi, Z. Hou, H. Li, J. Huang, and X. Li. 2015. A decomposition based memetic algo-
rithm for multi-objective vehicle routing problem with time windows. Computers
and Operations Research 62 (2015), 61–77. https://doi.org/10.1016/j.cor.2015.04.009

[6] K. C. Tan, Y. H. Chew, and L. H. Lee. 2006. A hybrid multiobjective evolutionary
algorithm for solving vehicle routing problem with time windows. Computational
Optimization and Applications 34, 1 (2006), 115–151. https://doi.org/10.1007/
s10589-005-3070-3

148

https://doi.org/10.1016/j.omega.2004.10.004
https://doi.org/10.1016/j.omega.2004.10.004
https://doi.org/10.1287/opre.6.6.791
https://doi.org/10.1016/j.cor.2015.04.009
https://doi.org/10.1007/s10589-005-3070-3
https://doi.org/10.1007/s10589-005-3070-3

	Abstract
	1 Introduction And Background
	2 Evolutionary Algorithm for MATSP
	3 Multi-Demic EA for MATSP
	4 Results and Discussion
	Acknowledgments
	References

