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Abstract. Modelling and planning as well as Machine Learning tech-
niques such as Reinforcement Learning are often difficult in multi-agent
problems. With increasing numbers of agents the decision space grows
rapidly and is made increasingly complex through interacting agents.
This paper is motivated by the question of if it is possible to train single-
agent policies in isolation and without the need for explicit cooperation
or coordination still successfully deploy them to multi-agent scenarios.
In particular we look at the multi-agent Persistent Surveillance Problem
(MAPSP), which is the problem of using a number of agents to continu-
ally visit and re-visit areas of a map to maximise a metric of surveillance.
We outline five distinct single-agent policies to solve the MAPSP: Re-
inforcement Learning (DDPG); Neuro-Evolution (NEAT); a Gradient
Descent (GD) heuristic; a random heuristic; and a pre-defined ‘plough-
ing pattern’ (7Trail). We will compare the performance and scalability
of these single-agent policies to the Multi-Agent PSP. Importantly, in
doing so we will demonstrate an emergent property which we call the
Homogeneous-Policy Convergence Cycle (HPCC), whereby agents fol-
lowing homogeneous policies can get stuck together, continuously re-
peating the same action as other agents, significantly impacting perfor-
mance. This paper will show that just a small amount of noise, at the
state or action level, is sufficient to solve the problem, essentially creating
artificially-heterogeneous policies for the agents.

Keywords: Multi-Agent Systems, Reinforcement Learning, Surveillance,
Coverage, Emergent behaviour

1 Introduction And Background

Real-world problems such as reconnaissance and surveillance [13,14], search and
rescue [9] and, drone crop-monitoring [11] rely on efficient and continuous ways
of visiting areas of the world. For problems covering large areas or when higher-
frequency monitoring is desirable it can be useful to deploy multiple agents,
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or even swarms [1], in an environment. Modelling and planning for multi-agent
problems can often be difficult due to a rapidly growing decision space, made
increasing complex through the interacting agents [17]. Additionally, this can
result in a need for coordination and communication that may not be possible
in many situations. Many Unmanned Aerial Vehicle (UAV) platforms and off-
the-shelf solutions are designed in isolation and typically offer only single-agent
behaviours. Unless agents have been designed for multi-agent settings or can
be coordinated via some centralised control, then policy homogeneity might be
unavoidable. However, as we will demonstrate in this paper this can lead to
undesirable emergent properties.

The aim this paper is to explore the concept of using single-agent policies,
designed and/or trained in isolation, that can be successfully deployed in a multi-
agent scenario. In particular we focus on the multi-agent Persistent Surveillance
Problem (MAPSP), as a simplified use-case pertinent to multi-agent systems
research. The MAPSP is the problem of using a number of agents to continually
visit and re-visit areas of a map in order to maximise a metric. We outline, in
Section 3, a range of different action policies, for agents to decide the best action
to take given an agent-centric local observation. Policies include 1) Random; 2)
Gradient Descent; 3) DDPG; 4) NEAT and 5) Trail-Following. In particular,
in Section 3.2, we will demonstrate that by deploying homogeneous single-agent
policies in a multi-agent setting can lead to a highly undesirable emergent prop-
erty that we call the ‘Homogeneous Policy Convergence Cycle’ (HPCC). Each
of the policies will be evaluated for varying numbers of agents and the HPCC
problem will be demonstrated. Finally approaches to counteract the HPCC will
be discussed where we will show that by essentially making the agents less ho-
mogeneous, via the addition of noise, is sufficient to fix the problem.

2 Persistent Surveillance Problem

The Persistent Surveillance Problem (PSP) belongs to a class of problems known
as coverage problems [4,5]. The aim of Persistent Surveillance is to continually
visit and re-visit all areas of a map in order to maximise a surveillance score
that sufficiently quantifies performance. To measure this a 2-Dimensional world
is divided into regions using a hexagonal-grid structure of N ‘hexes’, with each of
these hexes having an associated surveillance score (as depicted in Figure 1). The
total surveillance score, i.e. the PSP objective, is the sum of all the scores across
all the hexes. In this paper we have designed a score-function that quantifies
a notion of ‘level of surveillance’ and its subsequent exponential decay by a
relationship dictated by the hex-score function:

V(hi,,) = {:j(h%) +C, if b} oc.cupied. 1)

(hi)A, otherwise.

This function defines that when an agent is in a hex, h?, it increases that hex’s
score, V(h') by a positive linear constant, C, each time-step it occupies the hex.
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Then for any hex unoccupied the score V(h?), decays exponentially by a factor

A = (1/2)"“ ™) \which is a constant parametrised by its ‘half-life’ value T}, such

that A < 1. The score of each hex is also bounded, restricting V(hY) € [0, Umax]-

We define the set H; = {h! for i = 1..N'} to be the set of all N hexes at time

t. Thus the total surveillance score, at time t, is sum of all the scores of H;, that
is

V(H) = > V(h). 2)

VhieH

The aim of the PSP is to keep the score V(H) as high as possible at all times,
with the max surveillance score defined as

V¥ (H) = max(V(Hy)). 3)

2.1 PSP Simulation Environment

The Persistent Surveillance Problem has been implemented as an environment
in-line with the OpenAI Gym [3] and follows the traditional State, Action, Re-
ward sequence [15]. The Multi-Agent Simulator (MAS) environment keeps track
of agent locations and their underlying states. The MAS can be queried for a
state (observation) of any agent and in turn the agent can carry out an action
in the environment and the MAS simulates the outcome, and returns a reward.
In the case when there are multiple agents, all observations and actions happen
simultaneously. In addition we assume that agents are unable to communicate
with each other and do not attempt to plan for other agents. The environment
is defined over the bounded 2-Dimensional world W. All agents are restricted to
stay within W, with their motions being ‘clipped’ at the simulator level ensuring
they can only move within the bounds.

100 4

Fig. 1: Agent-centric observation, higher-values green, lower are red, s¥ = [20.00,
9.83, 10.66, 19.77, 18.49, 10.12, 9.00]
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The specific environmental parameter choices for the results in this paper are
as follows. The world, W = [0, 100] x [0, 100] and is made up a grid of N = 56
hexagons each with a height of 15m (flat edge-to-edge). The simulation updates
at a discrete time-step dt, updating all h' € H, using Equation (1) with a half-
life decay T}, = 120, a linear increase C' = 5 and a maximum value of vy, = 20.
To help with agent training and performance we also use a technique called
frame-skip, (popularised from Deep Learning techniques designed to play Atari
games [10]) which limits the rate of decision making to once every 3d¢. Thus an
agent receives an observation every third time-step, acts on it and this action is
held for 3dt. Furthermore we define each agent velocity as 5m/dt, and so every
action results in the agent moving 3 X 5 = 15 meters across the world.

2.2 Local Observations

The PSP simulation environment keeps track of the current global state of the
world via the scores of each hex, using the current values, the agent locations
and Equation (1). Agents deployed in the environment will be given access to
these states via observations, as depicted in Figure 1, which will be agent-centric,
i.e. dependent on the current agent location. The policies outlined in this paper
are given only these local observations of the state, with which to make their
action decision (with the exception of Trail which requires a degree of global-
localisation to stay on course).
We define the set of hexes directly adjacent to h' as

hexAdj(h') = {Vh? € H|h’ adjacent h'}, (4)

which is shown in Figure 1 with h? in the centre. Then, given an agent k, cur-
rently located in hex h’, the agent’s observation s*(h?) (we choose to shorten
the notation to simply s* when it is appropriately clear), is defined as

s¥(h') = {V(h) for h € {h’ UhexAdj(h?)}. (5)

It is the role of each policy to use this local-state observation, s*, to decide the
best action to take in the environment.

While our agents are restricted to the bounded world W they may observe
hexes outside of this, in which case those hexes are declared ‘obstacle hexes’. Any
obstacle hex, h°P®, has its observation value set to vons Which is a value greater
than vpax but with V(h°Pst) = 0 so as not to contribute to the score. Additionally,
in the multi-agent scenarios any observation which contains another agent is also
declared h°Pst and set to vypst. Note that a hex hoPst does not physically restrict
an agent from moving into it, instead its aim is to deter agents moving there by
being a high value while not contributing to the score and in turn not affecting
the reward.

2.3 Action Policy

An agent k’s decision making is contained entirely within its policy function
7%. The role of the policy to take an observation, s, and provide an action,
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a® « 7(s*), from the set of all possible actions .A. In this paper the action,

a* € [-1,1] x [-1,1], is the two-dimensional trigonometric-encoding of direction
in which to travel, that is, the agent heading, 6, encoded by the two values
a* = [sin(0), cos(f)] (with @ = 0 corresponding to East).

Some of the policies outlined in Section 3.1 use a discrete action policy,
whereby an action is chosen from a set, a® € A4, of 6 possible hexagonal di-
rections, equivalent to the angular encoding 6 € [%’T, 9%, HT”, & %’T, %’r] These
angles correspond to the angular direction from the centre point of the centre
hex A’ to the centre of each of h € hexAdj(h?).

2.4 Reward Function

For policies which require ‘training’ (i.e. DDPG and NEAT) we must also define
a reward function. At each time, ¢, an agent k chooses an action, a®* via its
policy, 7%, the agent carries out that action in the environment and in return
is given a reward, r*. The Machine Learning (ML) agents, DDPG and NEAT,
of Section 3.1 require this reward to learn, and the reward function itself is a
hugely important factor within ML in shaping how and what an agent learns [8].
As the agents only have access to local observations the reward is restricted to
be a function of these only. For an agent k, at time ¢ in hex h¥, we define the
reward to be how much the state sf(h!) is improved as a result of taking the
action, that is:

ress = V(sk,y () = V(s (h1) (6)

Thus the agent gets positive reward if it leaves the s*(h?) better than when it
arrived. This reward is provided to the agent by the environment as it keeps
track of past hex scores. The mathematical incentive of this reward is to ensure
that the linear addition of C' from Equation (1) is better than the loss via the
decay of A\ of each of the other hexes. By having the bound of vyay it means
that agents do not simply try to move between two hexes, instead they should
be moving towards hexes of lower values where there is sufficient ‘room’ to add
value.

2.5 Analytical Assessment

Given a world W, the score function of Equation (1) and a hexagonal-grid struc-
ture of the environment we are able to analyse theoretical bounds on PSP prob-
lem. For each action-step (i.e. 3 time-steps) the most value an agent can add
to a hex is 3 x C' = 15, and hexes have a maximum value vy,.x = 20, this
means that ideally we want to be moving towards hexes that are ideally less
than vma.x — 3¢ = 5.

If we visit each of the N = 56 hexes in some sequence, Hgeq = {h", ..., A"},
and spend 3dt at each, then each hex will have a score ag = 15 at the time it
is visited and then that value will subsequently decay. The currently occupied
hex h} will have the highest value V(h}) = ag, then the hex visited previously,
at the current time-step, h?_l, had the same value but has since decayed by A
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and thus V(h)'™') = apA and for n — 2, V(h"?) = apA?. This continues in this
fashion until the hex visited n time-steps ago, which has a value V(h?) = agA™.
The sum of these scores, and thus the current surveillance score, is in fact a
geometric series:

n—1
1-A\"
0 1 2 . n _ k —
ag\” + ap\” + agA© + + ap kEZO ap ao ( T ) (7)

Therefore, visiting each hex once, for A = (%%) the surveillance score reaches
V(Hgeq) = 542. The value of the hex visited n time-steps ago Hgeq, V(ho) =
agA™ = 15 x 0.379 = 5.684. Therefore if we continue to visit the hexes in the
order of Hgeq, that is we now visit hy again, and its value becomes 5.684 + 3 x
C = 20.684, which is above vy, and so is capped at 20. Repeating the same
logic as before ag + 20 and using Equation (7) the surveillance score becomes
V(Hyeq) = 723.

In order to achieve these kinds of scores it is necessary to find an admissible
sequence Hyeq that can be visited in that order. This requires a kind of trail,
that visits each hex only once and returns to the starting hex, in graph-theory
this is known as a Eulerian cycle. Therefore it is clear that in order to maximise
the surveillance score it is necessary to find a policy that best approximates this
kind of cycle. With this in mind, in Section 3.1 a trail-agent will be outlined,
which is able to follow a pre-defined cycle, and used as a benchmark to compare
the other agents to.

Fig. 2: Ideal hex trail resulting in ge- Fig. 3: Pre-defined trail for agent to
ometric series follow

3 Single-Agent Policies for the PSP

We now outline five single-agent policies designed to solve the Single Agent
Persistent Surveillance Problem. The objective of each of these policies will be
to achieve the best V*(H) during an episode, by deciding, at each step which
direction to move around the environment.
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3.1 Five Policies for PSP

The first two policies act as benchmarks to essentially bound what good and bad
performance looks like. The first, Random, acts independently of observations
and moves randomly and should result in poor performance. While the second,
Trail, uses the idea of Section 2.5, and follows a pre-defined trail, requiring global
information and should result in the best performance.

The remaining three, local policies, act on the local agent-centric observations
of the world described in Section 2.2. A simple heuristic policy called gradient
descent acts on the model that moving towards lower values is best. Finally, we
use two different ‘off-the-shelf” ML algorithms, DDPG and NEAT, and apply
them to our implementation of the Persistent Surveillance Problem.

All of the methods outlined in this paper have been implemented in Python
3.5 and all the simulations are run on a Dell Precision 3520 laptop running
Ubuntu 16.04, with a 2.7Ghz core i7 CPU and 16GB of RAM.

Random policy The role of the random agent is to act as a minimum bench-
mark and is essentially a blind-policy. The agent is given an observation, s*, but
is not used in its action selection. The agent simple picks, at random, a discrete
direction from one of the six possible, a®* € A,. Due to the randomness of this
policy, it is non-deterministic.

Trail Policy Benchmark As discussed in Section 2.5 an ideal path to take is
one travelling through a sequence of hexes in a Eulerian Cycle. Boustrophedon
patterns, also known as ploughing patterns, are some of the best known examples
of this approach and have long be used in agriculture [7] and in search and rescue
missions [12].

For the purposes of providing a benchmark, a pre-defined trail-based policy
is implemented as shown in Figure 3. However, we must note that a direct
comparison is not entirely fair as this policy requires a degree of global-state
localisation that is not afforded to the local-state policies. An agent running the
trail-policy must first work out where it is on the trail in order to determine
where to move next. Thus the policy here is to take the trail-point closest to the
agent and then select the action in the direction of the next trail-point. An agent
will continue around this cycle trying to essentially approximate the geometric
sum of Equation (7).

Gradient Descent Policy A Gradient Descent (GD) approach is used as a
simple yet effective heuristic. This acts as a very simplified model-based policy,
where the model is ‘move towards nearby hexes of lowest value’. That is, choose
the hex, W™ = argmin(s¥), with the lowest observation value and move towards
it. Thus the discrete action a® € Ay is the one corresponding to A™".

Using the example observation of Figure 1, sf = [20.00, 9.83, 10.66, 19.77,
18.49, 10.12, 9.00], the GD policy would move towards the hex corresponding to

minimum value ™" = 9.00, i.e. the last value of sf, North-West (37/6). In the
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event of there being more than one minimum value, then one of them chosen at
random (this adds a level of uncertainty to this policy).

DDPG Policy A Tensorflow implementation of the Deep Deterministic Policy
Gradient algorithm [8] is used, which is a model-free, online, off-policy Reinforce-
ment Learning method. It combines the use of an actor-critic architecture along
with target-network updates, replay buffers and stochastic exploration. DDPG
is designed to be used within environments with continuous actions spaces which
is why it was chosen for this problem. DDPG is a policy gradient method and as
such uses a functional approximation, in this case a Deep Neural Network, to the
Q-function. RL is used to train these DNNs through standard SARSA struc-
tured examples [15] to allow us to compute the optimal action, a, to take for a
given state s, that is the action which maximises our Q-function, max,Q*(s, a).

This implementation uses the standard hyper-parameters of the original pa-
per [8]. With an input layer, two hidden layers one of 400 and one of 300 units,
and one output layer. A learning rate of 10 for the actor networks and 1073
for the critic networks. A discount factor v of 0.99 is used, a target-network
update rate of 7 = 0.01. The Ornstein-Uhlenbeck process was used for training-
noise [18], with noise parameters of § = 0.05 and o = 0.05. The input to the
Neural Network is the state observation of the 7 hex values normalised between 0
and 1. Our DDPG has two outputs, activated via hyperbolic-tangent functions,
giving output values 01,09 € [—1,1] which correspond to the action a® of Sec-
tion 2.3, sin(6) and cos(6) respectively. The reasoning behind using two output
values was to overcome a neuron-saturation [6] issue observed by the authors, a
single angle can be easily recovered via the § = arctan2(sin(#), cos(#)) function.

The DDPG network was trained for 2000 episodes using the reward function
of Equation (6) taking approximately 60 minutes, at which point training had
sufficiently converged.

NEAT Policy Neuro-Evolution of Augmenting Topologies (NEAT) [16] is a
method for evolving Neural Networks (NN) via an Evolutionary Algorithm (EA).
Here a NN is subjected to an EA process in order to evolve both the structure,
the weights and the activation functions of the NN with the key idea of starting
by building from small NNs and evolving to add increasing complexity.

The evolutionary approach differs to the standard SARSA of RL by way
of the Reward. Where, as is the case of DDPG, the reward received in RL is
at each step, EAs instead use an episodic measure of success known as fitness.
Therefore, any network evolved by NEAT is evaluated against this fitness value
and a selection operator determines whether it is kept for the next generation.
The fitness function used in the paper is the cumulative value over the episode
of the reward function of Equation (6).

The NNs take the 7 values of s* as input, are a single-layer deep, and have 6
output nodes with each corresponding to an action direction a* € Ag4. A soft-max
activation function is used to select the highest-valued output neuron, the corre-
sponding discrete action is then returned. NEAT is initialised with a population
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of fully connected single layer NNs with randomised weights and activations.
The process of NEAT is for each generation to evolve the population of candi-
date NN, test them within the PS environment, evaluate their fitness using the
cumulative reward function of Equation (6) and select the best candidates to
be retained for the next generation. NEAT continues this standard evolutionary
process until a termination condition is met, in this case 2000 generations. The
resulting NN is then the NEAT policy, taking in the observation s*, running it
through the NN, and taking the resulting action.

3.2 Multi-Agent Deployment of Single-Agent Policies

To deploy multiple agents within the MAS described in Section 2.1, we take a
given policy and deploy copies of it on each agent within the environment. The
MAS provides agents with observations and the agents decide action to take,
these observations and actions happen simultaneously. The agents are unable to
communicate, coordinate or plan for each other except for other agents appearing
as obstacles. Outside of getting v,hst in an observation there is no enforcement
of collision avoidance, instead agents motivation for avoiding one another is
intrinsic to the reward function itself.

4 Results and Discussion

The aim of this paper is to assess how well policies, designed in isolation, are
able to be deployed on multiple agents in the same environment. Firstly, we will
see how well the single-agent policies perform in the single-agent environment.
Then for each policy we test how well it performs when being deployed on a
given number of agents. In Section 4.2 we will discuss how all agents having ho-
mogeneous policies leads to highly undesirable emergent behaviour, importantly
in Section 4.3 we will demonstrate how we are able to overcome this emergent
behaviour through noise.

4.1 Homogeneous-Policy Performance

The five single-agent policies outlined above are now tested in a single agent en-
vironment to assess performance. Each trial will be run 100 times (100 episodes),
with an agent with a chosen policy deployed in the environment outlined in Sec-
tion 2, of a 100m by 100m area made up of 56 hexes H. Each episode starts
with the agent in a random location in W and then proceeding to run for 200
action-steps (which is 600 dt as each action is held for 3 dt).

For the real world problems needing to continuously surveil an area, there
are a number of metrics, based on our surveillance score, which could measure
performance. These can be continuous measures such as the average score, the
maximum score achieved, time-to-reach a certain value or could be pass-fail
such as never dropping below a certain minimum-value. The results presented
here will be based on V*(H;) averaged over all runs. Traits of a good policy are
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high average values, which rise quickly and remain stable and ideally have lower
variance across runs.

The single-agent deployment results, as shown in Figure 4a, show that the
benchmark policy performs the best with almost no variance, with the ‘peaks’ of
the trail policy, visible at step 56 and 112, depicting when the agent completes
each lap of the trail. As expected the random policy performs the worst with
the highest levels of variance. The remaining three policies (GD, DDPG, NEAT)
all perform somewhat similarly, with DDPG initially performing well but later
being outperformed by GD. All agents experience the diminishing rate of reward
towards the later parts of the episode due to most of the hexes having high scores,
at which point the policies simply maintain them.

However, the results of Figure 4 and Figure 5 show that when multiple-agents
are used, we quickly observe that the three policies GD, DDPG and NEAT all
exhibit the same dramatic drop-off in performance. This is due to an effect we
will discuss next in Section 4.2 which we call Homogeneous-Policy Convergence
Cycle (HPCC). This effect appears to worsen with increasing numbers of agents,
exhibiting this performance-drop more quickly. What is equally alarming is that
this effect is so bad that for 10 agents it appears that an entirely random policy
can outperform them on average.

Notably even the analytical best policy, that is The Trail Policy, also fails
to easily transfer to the multi-agent scenario albeit for a different reason to the
others. Here it is due to the fact the agents are placed in the world at random
and are therefore not necessarily evenly spaced across the trail. This means that
you could end up with agents grouped behind one another, and as discussed in
Section 2.5 agents ideally want to be going to the least visited hexes next, and
not to one just visited by another agent. This could be fixed in a number of
ways but would require some additional coordination or planning, such as being
forced to slow down to space out, or this could utilise the observations more and
moving to parts of the trail where the next hex in the trail has a lower score,
however these are left for future work.

4.2 Homogeneous-Policy Convergence Cycle

Figure 4 and Figure 5 show a large reduction in performance by simply deploy-
ing a homogeneous policy to multiple-agents within the same environment. The
cause of this is due to an emergent property that we call Homogeneous-Policy
Convergence Cycle (HPCC). This property is cyclical in nature and can occur
when two or more agents occupy the same hex and essentially get ‘stuck’ to-
gether. The process is depicted in Figure 6a and happens, at some time ¢, as
follows

1) Agents move to the same hex hy;

2) Agents get an identical local state observation sy;

3) Identical, deterministic policies 7, return identical action choices a;

4) Agents in the same hex, h;, perform identical actions, and move to the same
hex, h¢11, as the other agents - thus returning to step 1)
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The HPCC problem is essentially a product of homogeneity and determinism,
something that appears in game-theory, the El Farol Bar problem [2] for example.
The solid-line path of Figure 6a represents this convergence cycle, if we break
away from any of the 4-steps above and transition onto one of the dotted paths
we can break this cycle, this can be achieved by doing one of the following:

1) Co-operate to avoid moving into the same hex — h} # h?

2) Have differing states — s} # s? and therefore a} # a?

3) Have differing action choices — af # a7 and therefore sy, # s7,,
)

4) Have differing policies so identical states may result in differing actions

To achieve 1) we would require the addition of coordination which is not the
aim of this paper. We could also achieve 4) as we have outlined 5 different PS
single-agent policies which are heterogeneous from one another. So for scenarios
with 5 agents or fewer we could feasibly deploy a team of agents each with a
heterogeneous-policy as depicted in Figure 6d, however for an increasing number
of agents designing new, distinct, policies is more difficult and is unrealistic for
large numbers of agents. Instead we focus on 2) and 3) and look at a straight-
forward method for overcoming the HPCC problem via the addition of noise.

4.3 Artificial Heterogeneity

We will now demonstrate two similar ways, as depicted in Figures 6b and 6¢, to
break HPCC through artificial-heterogeneity. By simply adding noise to either
an agent’s action or to an agent’s state observation, we are able to essentially
turn homogeneous policies into heterogeneous ones.
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Action Noise The optimal action chosen by our policy a; < 7*(s;) will be the
same for an identical state as it is deterministic. To achieve a non-deterministic
action, it suffices to take the action a; of the policy 7 and add a small amount of
noise, 7%, for each agent i, and for each dimension of the action space. This idea
is to increase the likelihood of producing different action choices a; # a7, as in
Figure 6b. The noise value is drawn from a uniform distribution v ~ ¢(—0.1,0.1)
for each action dimension and added to the output of the policy. Note that
the addition of noise results in an action which at an individual policy level is
suboptimal a; + v & 7*(a|sy).

Action-noise is sufficient in breaking HPCC, as shown in Figure 7, the previ-
ously exhibited long-term performance drop-off is entirely removed. This allows
us to effectively deploy single-agent heterogeneous policies on multiple agents
with only a minor adjustment.

State Noise Instead of directly altering a homogeneous policy’s action choice
we can instead perturb our state observations, s;, by again adding small amounts
of noise. This is depicted in Figure 6¢c, where for each agent i, we add the noise
7" (the same size as s) to the identical state s;, so that si = s; +~%. The aim
is to increase the chances that si # s;. Again, noise 7¢, is taken from a uniform
distribution v ~ U(-1.0,1.0) for each agent i, with dimensions to match the
state observation (this distribution is proportionally similar to the action noise
distribution). The aim is that we are able to ensure that even if agents occupy
the same hex, the observations they receive differ slightly and thus for a sufficient
level of state noise will result in distinct action choices a} # a?.

The results of Figure 8 clearly show just how effective even a small amount
of noise added to either the action or state is, fixing HPCC. It appears that for
higher agent counts, state noise results in higher max surveillance scores along
with lower variance. As expected adding noise to the Trail policy has little effect,
as it does not suffer from HPCC and it does not act on the state information.

The choice of where the noise is added has some subtle differences. By adding
noise to the state observation you are relying on s +~' and s +~2 at some point
being sufficiently different to result in the policy 7 outputting two different ac-
tions, and the agents then moving out of the same hex. Whereas with action
noise, assuming ' # +2, you are forcing a +~' # a + 2, so agents are there-
fore always taking different actions. This is likely the cause of the difference in
variance of the two approaches. Additionally, due to the discrete action selection
of GD and NEAT, perturbation in the action space, as we add a continuous
amount of noise, allows a little more continuity in the agents movements. With
state noise only, discrete actions remain discrete, but if the same state plus noise
for two agents can now produce two different actions choice, those two actions
will differ by at least the discrete resolution instead of just the smaller action
noise.
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Fig. 7: Multi-Agent PSP performance over 200 action steps with action-noise
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5 Conclusion

This work was motivated by the idea of being able to design single-agent poli-
cies in isolation, and without the need for explicit cooperation or coordination
still successfully deploy them to multi-agent scenarios. We used the multi-agent
Persistent Surveillance Problem as a simple scenario to test our question. We out-
lined and demonstrated the results of five distinct single-agent policies designed
to solve the single agent PSP: Random; Gradient Descent; DDPG; NEAT; and
Trail. By deploying these single agent homogeneous policies to multiple agents we
quickly observe a negative emergent property that we called the Homogeneous-
Policy Convergence Cycle (HPCC). A property almost entirely the result of
homogeneity and determinism. Whilst we demonstrated the existence of HPCC
in MAPSP, one can imagine that this or a similar class of emergent properties
could occur in other scenarios. Environments with similar action-state tran-
sitional properties of those depicted in Figure 6a could be subject to similar
undesirable effects. Importantly however, we showed that we are able to remove
this property entirely, through the simple addition of noise. By adding a small
amount of noise to each agent’s action choice or state observation we were able
to essentially create artificial heterogeneity from entirely homogeneous policies.

This shows that some degree of noise can be a desirable property within a
system. This may appear somewhat reassuring as in many real world scenarios,
the introduction of state and action noise will often arise inadvertently, through
imperfections in aspects such as sensing, communication or computation. How-
ever, this also hints at the potential for a whole class of emergent properties such
as HPCC which may exist in many complex systems but remain unnoticed.

Many future directions are of interest, including exploring the impact of pa-
rameter space choices, such as different reward and score functions along with
different environments. However, of greatest interest is in understanding the
impact of system level choices, such as the inclusion of different aspects of coor-
dination and communciation, asking not just where, but also to what degree it
is necessary.
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